Our Research

Our research spans multiple areas in the chemistry and the engineering of energy materials. Currently, the development of new materials and systems for electrochemical CO2 conversion are particular areas of emphasis.

CO2 Reduction in Molten Salt Electrolytes

This project explores how CO2 can be electrochemically converted at high temperatures in molten salt electrolyte systems. This approach avoids potential competition with hydrogen evolution and potentially offers new avenues to address persistent challenges in electrochemical CO2 conversion in ambient conditions.

Catalyst Development for CO2 Electroreduction and Coupling with CO2 Capture

The development of new catalysts with improved activity and selectivity for CO2 conversion is important for further developments, and we also believe that establishing systems with built-in functionality for CO2 capture is important for the future development of stand-alone technologies for CO2 conversion.

Development of Hybrid Biotic-Abiotic Electrocatalytic Systems 

In principle, electrochemical systems can produce products with high current density, yet for some reactions that would be important for new sustainable technologies, achieving selectivity and activity remains challenging. This is particularly true for reactions such as N2 reduction. In contrast, biological systems can have high selectivity for these challenging reactions. We seek to develop hybrid systems to achieve the best-of-both-worlds where biotic and abiotic components can be paired.

Development of Perovskite-Inspired Materials

Inspired by work in the last decade on halide perovskites, our group has an active effort to develop new lead-free ionic semiconductor materials that will exhibit defect tolerant characteristics. 

CO2RR and Capture.png
Molten Salt CO2 Reduction.png
Lab Glovebox_edited.jpg